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1 Introduction

More than three decades after the first reported case of AIDS, sub-Saharan Africa remains the most affected

region in the world [1]. In 2019, adolescent girls and young women (aged 15-24) in this region alone accounted

for 24% of new HIV infections, more than double their proportion of 10% of the population [2]. The epidemic

is most prevalent among key populations (KP), including women and men who sell or exchange sex, men who

have sex with men, people who inject drugs, transgender women who have sex with men, and individuals in

prison [3]. Stigmatised and marginalised, key populations account for the vast majority of new infections in

West, North and Central Africa, and about 25% of new infections in East and Southern Africa, although they

represent relatively small proportions of all these populations [1]. In 2020, the risk of HIV infection was 25 times

higher among men who have sex with men than among heterosexual men; 26 times higher among female sex

workers (SWs) than among women in the general population; 34 times higher among transgender women than

among other adults; and 35 times higher among people who inject drugs than among people who do not inject

drugs [4]. In West Africa, sex workers remain the main group involved in the dynamics of HIV transmission.

More than 75% of HIV infections among heterosexual men are attributed to sex with sex workers [5]. The main

strategy to combat HIV remains the use of antiretroviral therapy (ART). Nevertheless, HIV prevention meth-

ods including pre-exposure prophylaxis (PrEP), circumcision and the use of condoms have been associated with

ARVs to contain the disease [2, 6]. Since 2001, HIV incidence has declined by more than 25% in 22 sub-Saharan

African countries [7]. However, more needs to be done to reduce HIV transmission among key populations that

continue to fuel the spread of HIV, threatening progress in the fight against the disease. Understanding the

dynamics of HIV transmission in this specific population would allow for effective and optimal strategies to

prevent and control the spread of HIV.

Mathematical modelling is an important tool for understanding epidemics and for providing a rational basis
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for evaluating policies to control the spread of a disease [6]. Thus, we find in the literature various mathemat-

ical models both to understand the dynamics of the spread of HIV and to measure the effect of intervention

programmes on it [8–16]. In Kenya, for example, Omondi et al. developed a mathematical model of HIV

transmission between sex workers and injecting drug users to assess the effect of combined PrEP, ARVs on the

spread of HIV [6]. In Ivory Coast, Maheu-Giroux et al. developed an age-stratified dynamic model of sexual and

vertical transmission of HIV among the general population, TS and men who have sex with men. Their model

was calibrated on detailed prevalence and intervention data (ARVs and condoms) [17]. In Benin, Geidelberg et

al. looked at the role of pre-exposure prophylaxis on the spread of HIV among PWs in the city of Cotonou.

The authors also used a compartmental model involving PrEP and antiretroviral therapy (ARV) in high-risk

(HCV and clients) and low-risk populations [18].

In Burkina Faso, the government has made the fight against HIV, AIDS and STIs a major challenge. The

2018 serosurveillance report gives an overall HIV prevalence of 1.2 % [1.0-1.4] compared to 1.3 % [1.0-1.5]

among 15-49 year olds at the end of 2017. Among key populations, numerous studies have been set up to study

the prevalence and incidence of HIV among MSM and TS [19–25]. Concerning TS, Low et al. [19] develop for

the first time in 2015, a deterministic compartmental model to evaluate the impact of condom and ARV use

on HIV incidence among TS and their clients. The model used had eight bins to account for ARV treatment

of HIV-infected individuals and the study population was stratified by gender. The impact of the interventions

was assessed in terms of proportion of infections averted and years of life gained by comparing a status quo

(no intervention) group with an intervention group. The status quo group was constituted with reference to

the prevalence of the disease between the years 1975 and 1980, the date of the first recorded case of HIV in

Burkina Faso. Some parameters of the model were estimated from a quasi-Bayesian framework [19]. Since the

introduction of PrEP as an HIV prevention method, there are no detailed mathematical models that take into

account HIV transmission between sex workers, their clients and the inter-group mobility of these individuals.

However, it is common practice for sex workers to engage in unprotected sex with clients in order to get more

money or for the condom to break during sex. It is therefore important to measure the contribution of this new

strategy to the spread of HIV.

The main objective of this work was to estimate the impact of the PrEP/Condom strategy on the spread of

HIV among HCVs and their clients through a comparative study of this combination against the standard of

care that existed at the time. This evaluation was assessed in terms of new infections averted by the strategy.

A secondary objective was to explore the impact of the PrEP/Condoms intervention on different categories of

STs and clients. A Bayesian supported Susceptible-Infected compartmental model will be developed to answer

this question. This model will be built according to the key stages of the evolution of the epidemic and the

risk behaviour of the study population. All the parameters of the model have been estimated by the Markov

Chain Monte Carlo (MCMC) estimation method, contrary to classical ODE methods; this has the advantage

of minimising the uncertainty of the parameters related to the epidemic [26].

The work is organized as follows: In section 2, the model describing HIV transmission between sex workers and

their clients is formulated. Section 3 concerns the mathematical study of the proposed model. More precisely,

in this section, we proved the well-posedness of the model, we computed the disease-free equilibrium point and

the basic reproduction number that has been shown to be the key threshold parameter in investigating the

disease dynamics. Moreover, thanks to certain conditions on R0(R0 < 1orR0 > 0), to the Varga theorem and
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to Lyapunov’s function principle [27, 28], we have studied the local and global stabilities of the steady states;

which ensures the validity and robustness of the model. This model was then used to build the Bayesian models.

We devoted Section 4 to the numerical simulations. The paper ends with a conclusion section 5 where we give

recommendations and perspectives.

2 Model formulation

The proposed approach is largely inspired by the work of Low et al.[19] and Wang et al.[29]. Disease dynamics

are captured in an Ordinary Derivative Equation (ODE) Susceptible-Infected system with Bayesian support.

In the first model, the study population is divided into three compartments consisting of those susceptible to

each stage of infection or AIDS. SC refers to HIV susceptible men (respectively SSW HIV susceptible SWs), IC

to HIV infected men (respectively ISW to HIV infected SWs) and AC to AIDS infected men (respectively ASW

to AIDS infected SW) The diagram and the interactions between compartments are described in Figure 2.

Figure 1: A compartmental representation of the pattern of HIV transmission between TS and their clients.

Dotted lines indicate transitions between risk groups, while solid lines indicate movement of individuals in the

same risk group.

The population sizes at time t for the two risk groups for the first model are given by :

NC(t) = SC(t) + IC(t) + AC(t), NSW(t) = SSW(t) + ISW(t) + ASW(t).

The total population size at time t is the sum of the population sizes of the two risk groups at time t, and

is given by N(t) = NC(t) + NSW(t). In the model, clients and SW are likely to become infected at different

infection rates given by :

λC = βCθSWpSW, λSW = βSWθCpC, θC =
IC
NC

, θSW =
ISW
NSW

In the case of the use of HIV prevention methods by one and/or both partners, the risk of transmission of the

disease when a person at risk meets an infected person is modified as follows :

λC = πβCθSWpSW, λSW = πβSWθCpC
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Where π represents the intervention package available to TS.The full list of model parameters and other as-

sumptions are described in the table opposite

(Table 1) :

Table 1: Description of parameters used in the model.

Symbol Description

N Population of people entering sexually active population who enter each risk group

µ Death rate based on life expectency at age 15

α Population growth factor

Λ Recruitment rate on each group

p HIV transmission probabilities through sex

γ Duration taken to move from asymptomatic stage to AIDS

λ Force of infection following the sex and risk group

θ Disease prevalence by the gender

d AIDS death rates by the gender

Following the above description, the following nonlinear ordinary differential equation are obtained
dSC

dt = ΛC − (λC + µC)SC ,

dIC
dt = λCSC − (µC + γ)IC ,

dAC

dt = γIC − (µC + dC)AC .

(1)


dSSW

dt = ΛSW − (λSW + µSW )SSW ,

dISW

dt = λSWSSW − (µSW + γ)ISW ,

dASW

dt = γISW − (µSW + dSW )ASW .

(2)

The system of equations in (1)–(2) is subject to the following initial conditions, SC(0) ≥ 0; IC(0) ≥ 0; AC(0) ≥ 0;

SSW (0) ≥ 0; ISW (0) ≥ 0; ASW (0) ≥ 0.

3 Models Analysis

3.1 Boundedness and Positivity of solutions of the model

Lemma 3.1 The domain ∆ defined by

∆ :=
{

(SC , IC , AC , SSW , ISW , ASW ) ∈ R6
+ : SC + IC +AC + SSW + ISW +ASW ≤

ΛC + ΛSW
µ

}
(3)

is bounded

Proof : From eq (1)-(2), we can write

dNC
dt

= ΛC − µCNC − dCAC 6 ΛC − µCNC (4)

dNSW
dt

= ΛSW − µSWNSW − dSWASW 6 ΛSW − µSWNSW (5)
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In doing (4)+(5), we get

dN

dt
= ΛC + ΛSW − (µCNC + µSWNSW ) (6)

If we let µ = min{µC , µSW }, It can easily be shown that

NC 6
ΛC
µC

+ (NC0 −
ΛC
µC

)e−µCt where NC0 = NC(0) (7)

NSW 6
ΛSW
µSW

+ (NSW0 −
ΛSW
µSW

)e−µSW t where NSW0 = NSW (0) (8)

From (7) & (8), we observe that as t → ∞, N(t) → Λ

µ
. So if N0 6

Λ

µ
then limt→+∞N(t) =

Λ

µ
. Clearly,

Λ

µ
is the upper bound of N. On the other hand, if N0 >

Λ

µ
, then n will decrease to

Λ

µ
as t → ∞. This

means that if N0 >
Λ

µ
, then the solution (SC(t), IC(t), AC(t), SSW (t), ISW (t), ASW (t)) enters ∆ or approaches

it asymptotically. Hence ∆ is positively invariant under the flow induced by system (1)-(2). Which completes

the demonstration.

Lemma 3.2 For any strictly positive initial condition
(
SC(0), IC(0), AC(0), SSW (0), ISW (0), ASW (0)

)
, the sys-

tem (1)-(2) has positive solutions.

Proof : To prove this, we will proceed by the absurd.

Let e(t) be such as e(t) = min
{
SC(t), IC(t), AC(t)

}
, ∀t ≥ 0

Let assum there exists t1 > 0 such that e(t1) /∈ R∗+ and e(t) > 0 ∀t ∈ [0, t1).

If e(t) = IC(t), then from the second equation of the system (1), we have

İC > −(µC + γ)IC

It follows that

0 = IC(t) > IC(0) exp
[
− (µC + γ)t1

]
> 0,

Which is a contradiction.

If e(t) = AC(t), then from the third equation of the system (1), we have

ȦC > −(µC + dC)AC

It follows that

0 = AC(t) > AC(0) exp
[
− (µC + dC)t1

]
> 0,

Which is a contradiction.

If e(t) = SC(t), then from the first equation of the system (1), we have

ṠC > −(λC + µC)AC
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It follows that

0 = SC(t) > SC(0)
[

exp(−µCt1) + βCθCpSW exp
(
−
∫ t1

0

ISW (t)dt
)]

> 0,

Which is a contradiction.

Thus, proceeding in the same way for system (2) leads to a contradiction.

Therefore, all the solutions (1)− (2) of the dynamic model of differential equations are positive.

3.2 Free Equilibrium point and Endemic Equilibrium

The system (1)− (2) has the following four (4) equilibrium points defined like that

ε0 =
{
S0
C , 0, 0, S

0
SW , 0, 0

}
, (9)

ε1 =
{
S∗C , I

∗
C , A

∗
C , S

∗
SW , 0, 0

}
, (10)

ε2 =
{
S∗C , 0, 0, S

∗
SW , I

∗
SW , A

∗
SW

}
, (11)

ε3 =
{
S∗C , I

∗
C , A

∗
C , S

∗
SW , I

∗
SW , A

∗
SW

}
. (12)

Note that ε0 refers to the HIV-free equilibrium whereas ε1 and ε2 refer to the first and second boundary en-

demic equilibria. On the other hand,ε3 defines the interior endemic equilibrium in the domain ∆. The HIV-free

equilibrium ε1 in the two risk populations is obtained from the systems (1)− (2) which reduces to


dSC

dt = ΛC − µCSC
dSSW

dt = ΛSW − µSWSSW
(13)

Setting the right-hand side of the system (13) to zero and solving, we obtain

S0
C =

ΛC
µC

,

S0
SW =

ΛSW
µSW

,

S∗C =
ΛC − (µC + γ)I∗C

µC
,

S∗SW =
ΛSW − (µSW + γ)I∗SW

µSW
,

A∗C =
γ

µC + dC
I∗C ,

A∗SW =
γ

µSW + dSW
I∗SW .

We also make this assumption :

for all H: IC,AC, ISW,ASW ∈ R+,


IC

AC

ISW

ASW

 ≤


I∗C

A∗C

I∗SW

A∗SW


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3.3 The basic reproduction number R0

The Basic Reproduction Number R0 for the system (1) − (2) is obtained using the new generation method

described in [30]. To find the threshold number R0 of the system (1)− (2), let F and V be the matrices of new

infections and transmission, respectively. At the HIV-free equilibrium ε0 of the system (1) − (2), the matrices

F and V are given by

F =



0 0
βCpSWS

∗
C

S∗SW
0

0 0 0 0
βSW pCS

∗
SW

S∗C
0 0 0

0 0 0 0


, V−1 =



1

µC + dC
0 0 0

− γ

(µC + γ)(µC + dC)

1

µC + dC
0 0

0 0 − 1

γ
0

0 0 0
1

µSW + dSW


Thus, the R0 which is the spectral radius of the matrix FV−1 is given

R0 =

√
βCβSWpCpSW

γ(µC + γ)
(14)

3.4 Stability Analysis

Lemma 3.3 The HIV-free equilibrium ε0 is locally asymptotically stable whenever R0 < 1, and unstable

otherwise.

Proof : Let us consider the infected classes IC,AC, ISW,ASW. By the equations corresponding to these states,

we have the linearization system at ε0 given by:

dIC
dt = λCSC − (µC + γ)IC ,

dAC

dt = γIC − (µC + dC)AC ,

dISW

dt = λSWSSW − (µSW + γ)ISW ,

dASW

dt = γISW − (µSW + dSW )ASW .

(15)

The matrixM1 associate to the linearised system (15) is given by :

M1 =



−(µC + γ) 0 βCpSW
ΛC

µCNSW
0

γ −(µC + dC) 0 0

βSWpC
ΛSW

µSWNC
0 −(µSW + γ) 0

0 0 γ −(µSW + dSW)


(16)

and the linearization system (15) can be rewrite at follows :

ẏ ≤ V1y,

where y = (IC,AC, Isw,Asw)t

Let V1 = F1 + V1 such as

F1 =



0 0 βCpSW
ΛC

µCNSW
0

0 0 0 0

βSWpC
ΛSW

µSWNC
0 0 0

0 0 0 0


;
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and

V1 =


−(µC + γ) 0 0 0

γ −(µC + dC) 0 0

0 0 −(µSW + γ) 0

0 0 γ −(µSW + dSW)


The matrix V1 is an inversible matrix and V−11 is given by :

V1
1 =



− 1

µC + γ
0 0 0

− γ

(µC + γ)(µC + dC)
− 1

µC + dC
0 0

0 0 − 1

µSW + γ
0

0 0 − γ

(µSW + γ)(µSW + dSW)
− 1

µSW + dSW


We can also see that F1 ≥ 0 and V−11 ≥ 0

Thus, R0 = ρ(−F1V−11 ) < 1 and from the theorem of Varga [27] the matrix M1 is asymptotically stable. The

eigenvalue of matrixM1 has negative real part, by a standard comparison theorem [31], when t −→ +∞, IC −→

0,AC −→ 0, ISW −→ 0 and ASW −→ 0 for system (15) and substituting IC = 0,AC = 0, ISW = 0,ASW = 0, in

(1)− (2) we get SC −→
ΛC

µC
,SSW −→

ΛSW

µSW
, as well as t −→ +∞.

Thus, (SC, IC,AC,SSW, ISW,ASW) −→ (
ΛC

µC
, 0, 0,

ΛSW

µSW
, 0, 0) as t −→ +∞ for system (1) − (2), when R0 < 1 .

Therefore disease- free equilibrium ε0 is globally asymptotically stable in the positively set ∆ when R0 < 1.

Lemma 3.4 The endemic equilibrium ε1 of system (1)− (2) is globally asymptotically stable, when R0 > 1.

Proof : Let ε1 =
{
S∗C , I

∗
C , A

∗
C , S

∗
SW , 0, 0

}
be the endemic equilibrium of system (1)−(2). From system (1)−(2),

we have 

ΛC = λ∗CS
∗
C + µCS

∗
C ,

λ∗CS
∗
C = (µC + γ)I∗C ,

(µC + dC)A∗C = γI∗C ,

ΛSW = λ∗SWS
∗
SW + µSWS

∗
SW ,

λSWS
∗
SW = (µSW + γ)I∗SW ,

(µSW + dSW )A∗SW = γI∗SW

(17)

Let define the function ψ on R∗+ by

Ψ(x) = x− 1− ln(x). (18)

The function Ψ(x) is non-negative for all x ∈ R∗+. Let us consider the Lyapunov candidate function define by :

V = VC + VSW, with VC = VSC + VIC + VAC and VSW = VSSW + VISW + VASW ,
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where

VSC
= S∗CΨ(

SC

S∗C
),

VIC = I∗CΨ(
IC
I∗C

),

VAC
= A∗CΨ(

AC

A∗C
),

VSSW = S∗SWΨ(
SSW

S∗SW
),

VISW = I∗SWΨ(
ISW
I∗SW

),

VASW
= A∗SWΨ(

ASW

A∗SW
).

Now, we have to differentiate the function V with respect to the time.

Let us compute VC

V̇SC
= (1− S∗C

SC
)ṠC

= (1− S∗C
SC

)(ΛC − λCSC − µCSC)

= (1− S∗C
SC

)(λ∗CS∗C + µCS∗C − λCSC − µCSC)

= −µC
(SC − S∗C)2

SC
+ βCpSW

S∗CI
∗
SW

NSW

[
(1− S∗C

SC
)(1− SCISW

S∗CI
∗
SW

)
]

= −µC
(SC − S∗C)2

SC
+ βCpSW

S∗CI
∗
SW

NSW

[
− SCISW
S∗CI

∗
SW

+ 1 + ln(
SCISW
S∗CI

∗
SW

)− S∗C
SC

+ 1 + ln(
S∗C
SC

)

+
I∗SW
ISW

− 1− ln(
I∗SW
ISW

)
]

V̇SC
= µC

(SC − S∗C)2

SC
+ βCpSW

S∗CI
∗
SW

NSW

[
−Ψ(

SCISW
S∗CI

∗
SW

)−Ψ(
S∗C
SC

) + Ψ(
ISW
I∗SW

)
]

V̇IC = (1− I∗C
IC

)İC

= (1− I∗C
IC

)
[
λCSC − (µC + γ)IC

]
=

βCpSWS∗CI∗SW
NSW

(1− I∗C
IC

)
[ ISWSC

I∗SWS∗C
− IC

I∗C

]
=

βCpSWS∗CI∗SW
NSW

[ ISWSC

I∗SWS∗C
− 1− ln(

ISWSC

I∗SWS∗C
)− IC

I∗C
+ 1 + ln(

IC
I∗C

)− SCI∗CISW
S∗CICI∗SW

+ 1 + ln(
SCI∗CISW
S∗CICI∗SW

)
]

V̇IC =
βCpSWS∗CI∗SW

NSW

[
Ψ(

SCISW
S∗CI∗SW

)−Ψ(
IC
I∗C

)−Ψ(
SCI∗CISW
S∗CICI∗SW

)
]

V̇AC = (1− A∗C
AC

)ȦC

= (1− A∗C
AC

)
[
γIC − (µC + dC)AC

]
= γI∗C(1− A∗C

AC
)
[ IC

I∗C
− AC

A∗C

]
= γI∗C

[ IC
I∗C
− 1 ln(

IC
I∗C

)− AC

A∗C
+ 1 + ln(

AC

A∗C
)− A∗CIC

ACI∗C
+ 1 + ln(

A∗CIC
ACI∗C

)
]

V̇AC = γI∗C

[
Ψ(

IC
I∗C

)−Ψ(
AC

A∗C
)−Ψ(

A∗CIC
ACI∗C

)
]

Let K1 = max
{βCpSWS∗CI∗C

NSW
; γI∗C

}
VC ≤ −µC

(SC − S∗C)2

SC
+ K1

[
−Ψ(

S∗C
SC

) + Ψ(
ISW
I∗SW

)−Ψ(
SCI∗CISW
S∗CICI∗SW

)−Ψ(
AC

A∗C
)−Ψ(

A∗CIC
ACI∗C

)
]

(19)
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Similarly, it is shown that

VSW ≤ −µSW
(SSW − S∗SW)2

SSW
+ K2

[
−Ψ(

S∗SW
SSW

) + Ψ(
IC
I∗C

)−Ψ(
SSWI∗SWIC
S∗SWISWI∗C

)−Ψ(
ASW

A∗SW
)−Ψ(

A∗SWISW
ASWI∗SW

)
]
(20)

With K2 = max
{βswpCS∗SW I∗SW

NC
; γI∗SW

}
By using the assumption H, we obtain

V̇ ≤ 0 (21)

Also, we have V > 0 for all IC,AC, ISW,ASW ∈ R+, and V̇ = 0 for IC = I∗C, AC = A∗C, ISW = I∗SW, ASW =

A∗SW. Then, by the asymptotic stability theorem [28], the endemic equilibrium ε3 of System (1)-(2) is globally

asymptotically stable.

3.5 Bayesian SI Model for the Outbreak of HIV

According to the equations (1) − (2), the cumulative frequency for each state until time t can be expressed as

follows each state until time t can be expressed as follows:

SC =

∫ t

0

(
ΛC − (λC(s) + µC)SC(s)

)
ds, (22a)

IC =

∫ t

0

(
λCSC(s)− (µC + γ)IC(s)

)
ds, (22b)

AC =

∫ t

0

(
γIC(s)− (µC + dC)AC(s)

)
ds, (22c)

SSW =

∫ t

0

(
ΛSW − (λSW(s) + µSW)SSW(s)

)
ds, (22d)

ISW =

∫ t

0

(
λSWSSW(s)− (µSW + γ)ISW(s)

)
ds, (22e)

ASW =

∫ t

0

(
γISW(s)− (µSW + dSW)ASW(s)

)
ds. (22f)

The data consist of yearly counts Yt = (Y ICt , Y AC
t , Y ISW

t , Y ASW
t ) of the number of infected persons, over a time

interval T in years. To link the data to the SI dynamics, we can specify the following Poisson observation model:

YIC
t ∼ Poisson(IC(t)), (23a)

YAC
t ∼ Poisson(AC(t)), (23b)

YISW
t ∼ Poisson(ISW(t)), (23c)

YASW
t ∼ Poisson(ASW(t)). (23d)

Solving the system of differential (22a)− (22e) is subject to the initial values specified by SC = NC − 1,

IC = 1, AC = 0, SSW = NSW − 1, ISW = 1, ASW = 0 respectively.

3.6 Estimation of parameters

The model parameters were estimated using a Bayesian Markov Chain Monte Carlo (MCMC) method for the

system of differential equations. This approach allows us to incorporate prior information from the parameters.

The table below (??) summarises the data, estimated parameters, and posterior distribution of the Bayesian SI

model.
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3.7 Estimation of the impact of the intervention

The effect of the interventions in terms of person-years of infection averted over a 25-year period since 1980,

when HIV infection began in Burkina Faso, is assessed. To do this, we estimate and compare the expected

number of HIV infections among sex workers with and without the intervention during our study period.

4 Numerical simulations

The model was coded in R software using Stan’s rstan package. We opt for the fourth-order Runge-Kutta (RK4)

approximation for a numerical evaluation of the solution. Stan is a toolkit for Bayesian inference containing a

programming language for defining Bayesian statistical models, an MCMC sampler based on an algorithm called

"Hamiltonian Monte Carlo" (much faster than the Gibbs sampler implemented in BUGS) and a Quasi-Newton

type optimizer (for finding ML/MAP estimators).
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